Measurement of Mass Transfer Coefficients of Natural Gas Mixture during Gas Hydrate Formation

نویسندگان

  • Reza Mosayebi Behbahani Department of Gas Engineering, Petroleum University of Technology, Ahwaz, Iran
  • Vahid Mohebbi Department of Gas Engineering, Petroleum University of Technology, Ahwaz, Iran
چکیده مقاله:

In this study, mass transfer coefficients (MTC’s) of natural gas components during hydrate formation are reported. This work is based on the assumption that the transport of gas molecules from gas phase to aqueous phase is dominant among other resistances. Several experiments were conducted on a mixture of natural gas at different pressures and temperatures and the consumed gas was monitored and measured over time. The driving force is the difference between the solubility of hydrate former components at operating pressure and the corresponding equilibrium pressure. It was found that MTC is a function of pressure and temperature during hydrate growth stage. Consequently, an equation was proposed to calculate the mass transfer coefficient based on the experimental data.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

measurement of mass transfer coefficients of natural gas mixture during gas hydrate formation

in this study, mass transfer coefficients (mtc’s) of natural gas components during hydrate formation are reported. this work is based on the assumption that the transport of gas molecules from gas phase to aqueous phase is dominant among other resistances. several experiments were conducted on a mixture of natural gas at different pressures and temperatures and the consumed gas was monitored an...

متن کامل

Investigation of the Hydrate Formation Equilibrium Conditions of Natural Gas

One of the main problems in oil recovery via the gas injection is the formation of hydrates in thelines. In order to prevent the formation of hydrate in these lines, which leads to the blockage andsometimes explosion, at first, the equilibrium formation conditions must be determined and then toprevent its formation by changing the thermodynamic conditions or by adding the inhibitors. In thisres...

متن کامل

Experimental Measurement of Methane and Ethane Mole Fractions during Gas Hydrate Formation

The super-saturation condition has to be provided to form gas hydrates. Consequently, the prediction of the guest molecule fraction in the aqueous phase is crucial in the study of the gas hydrate kinetics. In the present work, several experiments were carried out in a semi-batch reactor in order to determine the mole fraction of methane and ethane during gas hydrates formation (growth stage...

متن کامل

Formation Kinetics of Structure H Gas Hydrate

This paper investigates the kinetics of structure H (sH) formation kinetics above and below the structure I (sI) formation equilibrium curve at temperatures of between 2°C and 6°C. Methane was used as a help gas and methylcyclohexane (MCH) was used as sH former. It was concluded that in the points above the sI formation equilibrium curve, at the first, the sI forms, and then converts to sH be...

متن کامل

Evaluation of Empirical Correlations for Predicting Gas Hydrate Formation Temperature

One of the important, practical and simple methods for hydrate formation conditionis empirical equations, and so far many empirical equations have been presented to predict thetemperature and pressure of hydrate formation. In this study, the methods and empiricalcorrelations have been reviewed and their predictive capabilities have been evaluated with ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 4  شماره 1

صفحات  66- 80

تاریخ انتشار 2015-01-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023